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Abstract. An injected microchip laser is theoretically studied, with the use of two models: in the first
model, which is traditional, the field is represented by a single frequency component in the slowly-varying
envelope approximation. In the second model, referred to as the Fabry-Perot model, two field components
are considered which are respectively centered around the frequency of an eigenmode of the injected laser
and the frequency of the injected field. Computation of locking ranges, bistability do mains are performed
and the results compared. They show not only an improved precision of the second model but also a
necessity to use it to describe some effects such as the bistable domains in the limits of the locking
domains.

PACS. 42.55.Ah General laser theory – 42.55.Rz Doped-insulator lasers and other solid state lasers

1 Introduction

Injection locking of laser oscillations was studied practi-
cally since the development of the first lasers. This phe-
nomenon is important in studies of fundamental prob-
lems of non-linear dynamics (such as dynamical chaos,
synchronization of chaotic oscillations, bifurcations or
bistability) and is of interest for controlling and inves-
tigating statistical properties of laser radiation (such as
intensity and phase noise or squeezing). Injection lock-
ing has also a significant applied value for the improve-
ment of characteristics s of high-power lasers (in particu-
lar, arrays of coupled lasers), for problems of transmission,
processing and storage of information. A boom in stud-
ies of properties of injected lasers was observed during
the last decade and the properties of injected semicon-
ductor lasers were considered in many theoretical and ex-
perimental works. A very important parameter of such
lasers is the linewidth enhancement factor. This parame-
ter characterizes a phase-amplitude coupling in a laser. In
a first publication Lang [1] theoretically studied dynam-
ics of injected semiconductor lasers with account of this
factor. Lang showed that it causes two important features
of an injected laser when the frequency of the injected
light is used as a control parameter: an asymmetric lock-
ing range and an instability of injection locking in a con-
siderable part of the locking range [1,2]. First publications
on the bistable behavior in injected semiconductor lasers
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and resonant amplifiers were done by Japanese scientists
[3,4]. The bistability was also attributed to the linewidth
enhancement factor. The bistability appears due to the
non-linear change of the refraction index which is pro-
portional to this parameter. Investigations on properties
of injected lasers have demonstrated that there is a con-
siderable difference in bistability and the locking range
for two ways of injection: (a) injection on the peak mode
[1–5] and (b) injection on side modes [6,7] (the peak mode
is the mode of the slave laser with the frequency closest
to the maximum of a gain line). In reference [8], polar-
ization bistability induced by optical injection was ob-
served in a vertical-cavity surface-emitting laser. A num-
ber of publications concerns the problems of four-wave
mixing in injected solid-state lasers [9–12]. This phe-
nomenon is observed outside the locking range. Beating
between the injected signal and the intracavity field of the
slave laser induces modulation of the population and this
modulation leads to the appearance of additional compo-
nents in the spectrum of laser radiation. The modulation
characteristics and the relaxation oscillations in injected
semiconductor lasers were studied in references [13–15].
Several publications were devoted to injection locking of
semiconductor laser arrays [16–18]. Non-linear dynamics
of injected semiconductor lasers is very rich and it is a sub-
ject of numerous current studies (see, for example, Refs.
[15,20–28]). Bifurcations, different routes to chaos, for-
mation and properties of strange chaotic attractors were
studied in these references. Formation of spatial pat-
terns in lasers subject to optical injection was studied
theoretically in references [29,30]. The quantum theory
of the intensity- and phase noises and the formation
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of non-classical states (in particular, squeezing) in injected
solid-state lasers were considered in references [31–33].
The intensity noise near the quantum noise limit was ex-
perimentally studied in an injection-locked cw Nd:YAG
non-planar ring laser [34]. All the theoretical studies were
essentially done on Class-B lasers in the context of the
Slowly-Varying Envelope Approximation (SVEA). The
field and the population difference obey two coupled non-
linear equations. Another idea has recently been developed
in which the field in the injected laser was split into two
components playing each the role of a competing dynamic
variable [35,36]. We will refer to this model as the Fabry-
Perot (F-P) amplifier model. This point of view led to
the interpretation of frequency locking as a consequence
of a quenching of the gain of the laser mode by the in-
jected field. It allowed also to compute the bistable do-
mains which limit the locking range. These results were
experimentally verified using a Class-A laser (a He–Ne
laser working at 3.39 µm). One aim of this paper is to
apply this idea to Class-B lasers. Recent progress in the
development of monolithic ring solid-state and microchip
lasers is drawing attention to investigate injection locking
for such lasers. The goal of our investigations is a theo-
retical study of injection locking dynamics of solid-state
lasers, in particular microchip lasers. For this purpose, we
will develop our model for the injected laser and compare
it to the traditional rate-equation model. Injection locking
range and periodic beat regime together with their stabil-
ity will be studied in the rate-equation model. Then the
Fabry-Perot amplifier model will be used: comparison of
these results with the former case show either an improve-
ment of the former theoretical predictions for some values
of the control parameters domains or even an inadequacy
of the rate equation model for other values.

2 Two models for injected solid-state laser

In most cases, dynamics of an injected laser was considered
within the framework of semi-classical laser theory. Two
models for an injected laser were used: the common rate-
equation model [1–11,13–28] and the Fabry-Perot ampli-
fier model [35–38]. For a class-B laser system, the polar-
ization of the gain medium is adiabatically eliminated and
one deals with two rate equations (for the complex oscil-
lating field within the laser cavity and for the population
inversion density). In the case of a single-mode solid-state
laser with an external optical signal injected into the res-
onator, one can write the rate equations in the following
form:

dE

dt
=
[
Γ
(
N

1− iδ

1 + δ2
− 1
)
− i(ωin − ωn)

]
E + κ

Ein
Tc
,

(2.1)

dN

dt
=

1

T1

[
N0 −N

(
1 +

Y

1 + δ2

)]
. (2.2)

In the above equations a complex electric field E is repre-
sented in the SVEA as: E = E exp(iωint). E and Ein are
the complex amplitudes of the electric field, respectively,

of the cavity longitudinal mode and of the injected light
(κ is the proportion of internal injected field with respect
to the external incident field); Y = |E|2 is the normalized
intensity; Γ is the loss rate, Tc is the round-trip time of the
cavity. N is the normalized population inversion density,
which relaxes with a characteristic time T1. We assume
that the gain line is homogeneously broadened with a cen-
tral frequency ω0 and a linewidth 2γud; δ = (ωn−ω0)/γud
is the relative detuning of the resonant frequency ωn of
the cavity longitudinal mode with respect to the line cen-
ter. Only one longitudinal mode with the frequency ωn the
closest to the frequency ωin of the injected light is consid-
ered. The population inversion density is normalized to its
threshold value for lasing at line center. The pump rate is
also normalized to its threshold value at δ = 0 and writ-
ten in the form N0/T1 = (1 + η0)/T1, where η0 is a pump
excess above threshold at line center.

In references [35–37], the Fabry-Perot amplifier model
in which the laser is interpreted as a non-linear amplifier
and filter was used for the description of an injected laser.
The basic equations of an injected solid-state laser in this
model are the following:

dE1
dt

= Γ
[
N

1− iδ

1 + δ2
− 1
]
E1, (2.3)

dE2
dt

=
1

Tc

[
K exp(−iF )− 1

]
E2 +

κ

Tc
Ein, (2.4)

dN

dt
=

1

T1

[
N0 −N

(
1 +

Y1

1 + δ2
+

Y2

1 + δ2
in

)]
(2.5)

where:

K = exp
[
ΓTc

( N

1 + δ2
in

− 1
)]

(2.6)

F =
[
ωin − ωn + ΓN

δin

1 + δ2
in

]
Tc. (2.7)

δin = (ωin − ω0)/γud is the relative detuning between the
injected frequency ωin and the frequency of gain-line cen-
ter ω0. Y1 = |E1|2, Y2 = |E2|2 are the normalized intensi-
ties. In this model, the time evolution of a complex electric
field E is represented by a sum of two components having
carrier frequencies ωn and ωin:

E = E1 exp(iωnt) + E2 exp(iωint). (2.8)

Here ωn is the frequency of the cavity longitudinal mode
closest to the line center (the peak mode). The frequency
of injected light is arbitrary. In particular, it can be close
to the cavity longitudinal mode which is different from
the peak mode. The derivation of these basic equations
for both models is given in Appendices A and B.

One of the aims of the present paper is to compare the
results obtained by using both models and to investigate
their conditions of validity.
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3 Rate-equation model

3.1 Injection locking range and stability
of stationary locking

In this section, injection locking for the case of the peak-
mode injection is considered on the basis of the rate-
equation model. Stationary injection locking is described
by the stationary solutions of equations (2.1, 2.2). In this
case the laser operates at the frequency of the injected
signal. The normalized locked field intensity Y and the
stationary value of N are expressed as:

S2 = Y
[( N

1 + δ2
− 1
)2

+
(
Ω + δ

( N

1 + δ2
− 1
))2]

,

(3.1)

N =
1 + η0

1 + Y/(1 + δ2)
, (3.2)

where S = κEin/(ΓTc
√
Is) is the normalized amplitude

of the injected light (κ is the injection coefficient (see
Appendix A) and Is is the saturation parameter (see
Appendix B)), Ω = (ωin − ωL)/Γ is the detuning, nor-
malized to the cavity losses Γ , of the injected light fre-
quency from the free-lasing frequency ωL of the slave laser.
Equations (3.1, 3.2) lead to a single cubic equation for Y
(or for N).

In the absence of the external light injection, the pop-
ulation inversion density is equal to its threshold value
Nth = 1+ δ2 (this is obtained from Eq. (2.1) in stationary
regime), the normalized intensity Y is YL = η0 − δ2.

The injection locking range is usually defined as the
range of detunings Ω where the inequality Y > YL holds.
Using this definition, the following expressions for the
locking range can be derived as it was done in referen-
ces [1,2].

If δ < 0:

−
S
√

1 + δ2√
η0 − δ2

≤ Ω ≤
S√

η0 − δ2
· (3.3)

As it was shown in [1,2] for semiconductor lasers, sta-
ble locking can be achieved only in a part of the locking
range. The stability of stationary locking was studied by
linearization of equations (2.1, 2.2) with respect to small
deviations from stationary state. For solutions of the lin-
earized equations proportional to exp(λtΓ ), one can derive
the following characteristic equation:

λ3 + a2λ
2 + a1λ+ a0 = 0, (3.4)

where:

a2 = b− 2N1, (3.5)

a1 = N2
1 − 2bN1 +N2

2 +N3, (3.6)

a0 = b(N2
1 +N2

2 )−N3(N1 + δN2). (3.7)

Fig. 1. Locking range boundaries versus the normalized am-
plitude S of the injected field for a YAG:Nd microchip laser
for three different values of the pump excess η0: η0− δ2 = 0.01
(label 1); η0−δ2 = 0.25 (label 2); η0−δ2 = 9.84 (label 3). Dot-
ted curves show the boundaries of the locking range calculated
with formula (3.3). Solid lines show boundaries for stability of
stationary locking calculated using inequalities (3.12).

where:

b =
1

ΓT1

(
1 +

Y

1 + δ2

)
, (3.8)

N1 =
N

1 + δ2
− 1, (3.9)

N2 = δN1 +Ω, (3.10)

N3 =
1

ΓT1

2NY

(1 + δ2)2
· (3.11)

In (3.5–3.11) N and Y are the solutions of equations (3.1,
3.2). In accordance with Hurwitz’s theorem, the stationary
locking is stable if:

a0 > 0, a1 > 0, a1a2 − a0 > 0. (3.12)

Figure 1 shows the locking range boundaries versus the
normalized amplitude S of the injected field. S is used here
as the control parameter. These results were calculated
for a YAG:Nd microchip laser having a cavity length of
1 mm, with δ = 0.4, a resonator loss of 2%, and three
different values of the pump excess η0: η0 − δ2 = 0.01
(1); η0 − δ2 = 0.25 (2); η0 − δ2 = 9.84 (3). The dotted
curves show the boundaries of the locking range calculated
with formula (3.3). The solid lines show boundaries for
stability of stationary locking which were calculated using
inequalities (3.12). For η0 − δ2 = 9.84 (curves 3), dotted
and solid lines coincide. One can see from Figure 1 that
stationary locking is stable practically in the whole locking
range.

3.2 Bistability within the locking range

In some region of laser parameters there are three station-
ary solutions of equations (3.1, 3.2). Two of them may be
stable simultaneously. In this case bistable injected laser
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Fig. 2. In region (I) coexist three stationary solutions of equa-
tions (3.1, 3.2). Included inside region (I) is the bistability re-
gion (II). This diagram is constructed in the plane of parame-
ters (η0, Ω), for the value δ = −1. These results were computed
for a YAG:Nd microchip laser with a cavity length L = 0.4 mm
and a resonator loss of 2%.

output can be observed. As it was shown for semicon-
ductor lasers, optical bistability is based on a saturation-
induced refractive index change due to light injection. In
a solid-state laser, the refractive index change is propor-
tional to δ. At small values of δ (δ < 0.5) this change
is thus small and bistability does not clearly appear. We
have found regions of laser parameters where three sta-
tionary solutions of equations (3.1, 3.2) exist simultane-
ously and, using the conditions (3.12) for the stability of
stationary locking, found the regions in which bistabil-
ity arises. The results show that at |δ| < 1 bistability
arises in very narrow regions of the frequency detunings Ω.
Figure 2 illustrates these results, in the plane of param-
eters (η0, Ω), for the value δ = −1. Three stationary
solutions of equations (3.1, 3.2) exist simultaneously in
region (I). In a small part (II) of this region, two of
these coexisting solutions are stable and bistability ap-
pears. One can reach the value |δ| = 1 for the mode
closest to the line center in the case of a YAG:Nd mi-
crochip laser with a cavity length L = 0.4 mm. In this
case 1/Tc = c/(2Ln) = 200 GHz, γud = 90 GHz and
δmax = 1/2γudTc = 1.1.

This bistability within the locking range is illustrated
in Figure 3 where the laser intensity is displayed as a func-
tion of the injected intensity used as a control parameter.
The usual S-shaped bistable characteristic curve appears
with the lower and upper stable branches.

3.3 Periodic beat regime and its stability

Outside the locked region, the injected field and the laser
field are simultaneously present and oscillate at differ-
ent frequencies. In this region, frequency generation arises
through the process of non-linear interaction [9–12]. In-
jecting a field induces two symmetric frequencies around
the laser mode, the first is regeneratively amplified side-
band at the injection frequency and the second is a four-
wave mixing (FWM) sideband equally and oppositely
shifted with respect to the laser frequency.

Fig. 3. Bistable intensity within the locking range for a
YAG:Nd microchip laser with a cavity length L = 0.4 mm,
a resonator loss of 2%, δ = −1, η0 − δ

2 = 0.4 and normalized
detuning Ω = 0.63.

Analytic solutions describing characteristic s of the in-
jected laser with account of FWM can be found in refer-
ences [9–12]. These results are valid in the case of weak
injected signals. The injected signal S is considered to be
weak if the locking bandwidth is less than the relaxation
oscillation frequency ωr = [(2Γ/T1)(η0 − δ2)]1/2. In this
case the following inequality holds:

S < S0 =
η0 − δ2

[2ΓT1]1/2
· (3.13)

For example, if η0 = 0.5, δ = 0.5, L = 1 mm and cavity
losses of 2%, one finds S0 = 0.002.

The efficiency in the FWM process resonantly in-
creases when the detuning Ω approaches the relaxation
oscillation frequency ωr. For detuning values larger than
ωr, the FWM efficiency rapidly decreases. We shall thus
consider sufficiently strong injected signals S > S0 when
the detuning values exceed the relaxation oscillation fre-
quency. In this case the FWM sidebands are negligible
as compared to spectral components of injected and laser
fields. Neglecting the FWM sidebands, one can write the
complex electric field E in the following form:

E = E1e
iωLt + E2e

iωint, (3.14)

where E1 and E2 are slowly varying amplitudes, and ωL =
ωn−δΓ . The following equations can be derived from (2.1)
for the amplitudes E1 and E2:

dE1
dt

= (1− iδ)ΓnE1, (3.15)

dE2
dt

= (1− iδ)ΓnE2 − i(ωin − ωL)E2 +
κEin

Tc
· (3.16)

Neglecting the modulation of N at the difference fre-
quency ωin − ωL, equation (2.2) gives:

dn

dt
=

1

T1

[1 + η0

1 + δ2
− (1 + n)

1 + Y1 + Y2

1 + δ2

]
, (3.17)
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Fig. 4. Intensity modulation depth h versus Ω in the peri-
odic beat regime. The results were computed for a YAG:Nd
microchip laser with a cavity length L = 1 mm, a resonator
loss of 2%, δ = 0.4, η0−δ

2 = 0.25, and a normalized amplitude
of the injected field S =0.04.

where n = N/(1 + δ2) − 1. The stationary solution of
equations (3.15–3.17) is:

n = 0, (3.18)

Y1 = η0 − δ
2 − Y2, (3.19)

Y2 = S2/Ω2. (3.20)

This solution gives the periodic solution of equations (2.1,
2.2), which can be written as:

Y2 = Y [1 + h cos((ωin − ωL)t+ φ)], (3.21)

where:

Y = η0 − δ
2, (3.22)

h =
2S

(η0 − δ2)Ω
[η0 − δ

2 − S2/Ω2]1/2. (3.23)

One can see from equations (3.21, 3.22) that the injection
induced modulation is characterized by a beat frequency
equal to the detuning ωin−ωL and by a mean value of laser
intensity similar to that (YL) of the free-running laser. The
intensity modulation depth h is plotted in Figure 4 as a
function of Ω. The periodic solution (3.21–3.23) exists in
the range of detunings Ω where inequality Y1 > 0 holds:

S

[η0 − δ2]1/2
< Ω < −

S

[η0 − δ2]1/2
· (3.24)

One of these boundaries coincides with the boundary of
the stationary locking range (see Eq. (3.3)). In the range
of laser parameters where the inequality |ωin − ωL| � ωr
holds, one can find an approximate solution of equa-
tions (3.15–3.17) for the nonstationary beat regime. Ne-
glecting the derivative dE2/dt, one has from (3.16):

Y2 =
S2

Ω2

[
1− 2

δn

Ω

]
. (3.25)

Substituting (3.25) in equations (3.15, 3.17), one can write
the following equations:

dY1

dt
= 2ΓnY1, (3.26)

T1
dn

dt
=

1+η0

1+δ2
−(1+n)

[
1+

Y1+(S2/Ω2)(1−2δn/Ω)

1+δ2

]
.

(3.27)

The stability of the beat regime can be studied by lin-
earization of equations (3.26, 3.27) with respect to small
deviations from stationary state. The roots of the charac-
teristic equation (Lyapunov exponents) are written as:

λ1,2 = γ ± iωr, (3.28)

where the decrement (increment) γ is:

γ = −
1

T1

[1 + η0

1 + δ2
−

2δS2

Ω3(1 + δ2)

]
, (3.29)

and the relaxation oscillation frequency ωr is:

ωr =
[2Γ

T1

η0 − δ2 − S2Ω2

1 + δ2

]1/2
. (3.30)

It should be noted that ωr in the beat regime is de-
pendent on the beat frequency Ω and decreases to
zero at the boundary of the stationary locking range
(Ω = S/(η0 − δ2)1/2). The periodic intensity beat is sta-
ble if:

1 + η0 > 2δ
S2

Ω3
· (3.31)

In accordance with (3.31), there is an asymmetry in the
stability domain of the periodic intensity beat. When δ >
0, this regime is stable for negative values of detuning
Ω. At positive values of Ω, the periodic beat regime is
unstable when Ω is such that:

S

(η0 − δ2)1/2
< Ω <

[ 2δS2

1 + η0

]1/3
. (3.32)

The regions of stability for various lasing regimes are
shown in Figure 5 in the plane (S,Ω). Numerical solutions
of equations (2.1, 2.2) show periodic spiking and the onset
of dynamic chaos in the region of instability of periodical
beat regime. In numerical simulations, the following values
of laser parameters were used: η0 = 0.5, δ = 0.5, S = 0.04,
and ΓT1 = 500. In accordance with results obtained
above, the periodic beat regime is unstable at the values of

detuning Ω < ΩB =
[ 2δS2

1 + η0

]1/3
. For these values of laser

parameters, one has ΩB = 0.102. For the chaotic regime,
the typical time domain behavior of the normalized in-
tensity Y is shown in Figure 6a at the value of detuning
Ω = 0.1. Figure 6b shows the time domain behavior for
periodic spiking atΩ = 0.085. For detuningsΩ outside the
locking range, one can observe bistable characteristic s in
the microchip laser at values of |δ| < 0.5. The bistability
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Fig. 5. Regions of stability for various lasing regimes in the
plane (S,Ω). The results were computed for a YAG:Nd mi-
crochip laser with a cavity length L = 1 mm, a resonator loss
of 2%, δ = 0.4, η0−δ

2 = 9.84. Regions 1, 2, and 3 represent, re-
spectively, the stable locking range, the periodic intensity beat,
and the chaotic or periodic spiking regime.

Fig. 6. Time domain behavior of the normalized intensity Y :
(a) dynamic chaotic regime for a detuning Ω = 0.1 and (b)
periodic spiking at Ω = 0.085.

occurs inside the region of the stable periodic beat regime
(region 2 in Fig. 5). The bistable region joins the region
of instability of the beat regime (region 3 in Fig. 5). One
of these regimes is the periodic intensity beat. Decreasing
Ω one can observe the instability of this regime and the
transition to chaos at Ω < ΩB . Then, the chaotic regime
remains for values of detuning Ω > ΩB . Near the bound-
ary of stability of the periodic beat regime at Ω > ΩB, two
regimes (periodic beat and dynamic chaos) can coexist.

4 Fabry-Perot amplifier model

4.1 Injection locking range and stability
of stationary locking

In this section, injection locking is considered on the basis
of the Fabry-Perot (F-P) amplifier model and the com-
parison is done with the results obtained with the rate
equation model. Stationary injection locking is described
by the stationary solutions of equations (2.3–2.5). In this
case the laser oscillation is quenched by the injected sig-
nal and thus Y1 = 0. Separating the real and imaginary
parts of equation (2.4) and summing their quadrates, one
obtains the injected stationary intensity inside the laser:

Y2
1 +K2 − 2K cosF

(ΓTc)2
= S2, (4.1)

where:

K = exp[ΓTc(N/(1 + δ2
in)− 1)], (4.2)

F = [ωin − ωn + ΓδinN/(1 + δin)2)]Tc. (4.3)

The stationary value of N is expressed from equa-
tion (2.5) as

N =
1 + η0

1 + Y2/(1 + δ2
in)
· (4.4)

Equations (4.1, 4.4) are analogous to equations (3.1, 3.2)
which were derived in Section 3. The phase shift F1 =
ωinTc is close to 2pπ (p is an integer) in the case of small
detunings |ωin−ωn| � 2π/Tc. In this case equations (3.1,
3.2) coincide with equations (4.1, 4.4). In accordance with
equation (2.3), stationary injection locking is unstable if
the inequality N > 1+δ2 holds. Here δ = (ωn−ω0)/γud is
the relative detuning of the peak-mode frequency ωn from
line center. Boundaries for stability of stationary locking
can be found from equations (4.1–4.4) in the following
way. For N = 1 + δ2, one has:

Y2 = Y20 = (η0 − δ
2)

1 + δ2
in

1 + δ2
, (4.5)

K = K0 = exp[ΓTc((1 + δ2)/(1 + δ2
in)− 1)], (4.6)

F = F0 = [Ω − δ + δin(1 + δ2)/(1 + δ2
in)]ΓTc. (4.7)

One can write δin as:

δin = δ + Γ
Ω − δ

γud
· (4.8)

Substituting (4.5–4.7) into (4.1), one finds:

S2 = F (Ω) = Y20
1 +K2

0 − 2K0 cosF0

(ΓTc)2
· (4.9)

One can directly calculate the locking range boundaries
Ω versus the normalized amplitude S of the injected field
by using formula (4.9). Let us first consider the case of
injection on the peak-mode (the injected frequency ωin is
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Fig. 7. Locking range boundaries versus normalized amplitude
S of the injected field for the case of injection close to the peak-
mode. Dotted curves show the boundaries of the locking range
in the rate equation model. Solid curves show corresponding
results of the F-P amplifier model. These results were calcu-
lated for the YAG:Nd microchip laser with a cavity length of
1 mm, δ = −0.4 (a) and δ = 0.4 (b), a cavity loss of 10%, and
a pump excess η0 − δ2 = 0.01.

close to the frequency ωn of the peak mode). The numeri-
cal results for the locking range boundaries are plotted in
Figure 7. Here the boundaries of locking range calculated
with the rate equations model are also shown by dotted
curves. Solid curves show corresponding results computed
with the F-P amplifier model. These results were calcu-
lated for the microchip laser on YAG:Nd with a cavity
length of 1 mm, δ = −0.4 (Fig. 7a) and δ = 0.4 (Fig. 7b),
a cavity loss of 10%, and a pump excess η0− δ2 = 0.01. A
loss of 10% was taken to illustrate the appearance of dif-
ferent results given by the rate-equation and F-P amplifier
models. For cavity losses less than 10%, boundaries of the
injection locking range, computed with the rate-equation
and F-P amplifier models, coincide in the considered re-
gion of normalized amplitudes S and detunings ωin − ωn
such that: |ωin−ωn| � 2π/Tc. Results are plotted in Fig-
ure 8 for broader detunings (|ωin − ωn| ∼ 2π/Tc). These
results were calculated for δ = 0.4 (Fig. 8a), a cavity loss
of 2% and otherwise for the same parameters as before;
in Figure 8b, the cavity length is L = 10 mm, δ = 0 and
other parameters are the same. The dotted curves in Fig-
ure 8a show the boundaries of the locking range calculated
in the rate-equation model for the case of the peak-mode
injection. One can see from Figure 8 that the F-P am-
plifier model describes not only injection locking on the
peak mode but also side-mode injection locking. Bound-
aries of all ranges of side-mode injection locking are de-
scribed by formula (4.9). In the rate-equation model, side-
mode injection needs a special consideration [6,7]. In the
case of small detunings between the injected frequency
(ωin) and the cavity-mode frequency (ωn) (|ωin − ωn| �
2π/Tc) both models give the same results. For larger de-
tunings (|ωin − ωn| ∼ 2π/Tc), the rate-equation model
(based on Eqs. (2.1, 2.2)) is not valid and one should use
equations (2.3–2.5). The consideration of bistability
within the locking range shows that the bistability re-
gion in the F-P amplifier model is broader than in the

Fig. 8. Locking range boundaries versus the normalized am-
plitude S of the injected field in a broad region of detunings Ω,
which includes side-mode injection. The dotted curves show the
boundaries of the locking range calculated in the rate-equation
model for the case of the peak-mode injection. Solid curves
show the results computed by using formula (4.9) of the F-P
amplifier model. These results were calculated for a microchip
laser with a cavity length of 1 mm, δ = 0.4 (a) and with a
cavity length of 10 mm, δ = 0 (b), a cavity loss of 2%, and a
pump excess η0 − δ2 = 0.01.

rate-equation model. The comparison of results obtained
in both models is given in Figure 9 in the plane (η0, Ω).
These results were calculated for the YAG:Nd microchip
laser with a cavity length of 0.4 mm, δ = −1 and a cav-
ity loss of 2%. There are regions where three stationary
solutions for injection locking exist simultaneously. These
regions are marked by RE-I and F-P I, correspondingly,
for the rate-equation and the F-P amplifier model. Fig-
ure 9 shows that the positions of regions RE-I and FP-I
are completely different: they are shifted from each other
by an amount of detuning (Ω) which exceeds the width
of these regions. Within regions RE-I and FP-I, regions of
bistability RE-II and FP-II are shown where two coexist-
ing solutions are stable. The bistability region in the F-P
amplifier model is much broader. In these calculations,
the inequality N > 1 + δ2 was used as the condition for
stability of stationary injection locking.

4.2 Periodic beat regime

In this section, the periodic beat regime is considered on
the basis of the Fabry-Perot amplifier model and the re-
sults are compared with those obtained with the rate-
equation model. The stationary beat regime is described
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Fig. 9. (RE-I) and (FP-I) are the regions of coexisting three
stationary solutions for injection locking. They include (RE-II)
and (FP-II) which are the regions of bistability in the plane
of parameters (η0, Ω) for the value δ = −1. These results were
computed with the rate equation (RE-I , RE-II) and the Fabry-
Perot (FP-I , FP-II) models for a YAG:Nd microchip laser with
a cavity length L = 0.4 mm and a resonator loss of 2%.

by the stationary solutions of equations (2.3–2.5). In this
case the two components with frequencies ωin and ωn are
present. The stationary solution of equations (2.3–2.5) is
analogous to the solution (3.18–3.20) of equations (3.15–
3.17) for the rate-equation model:

N = 1 + δ2, (4.10)

Y1 = η0 − δ
2 − Y2

1 + δ2

1 + δ2
in

, (4.11)

Y2 =
S2Γ 2T 2

c

1 +K2
0 − 2K0 cosF0

, (4.12)

where:

K0 = exp[ΓTc((1 + δ2)/(1 + δ2
in)− 1)], (4.13)

F0 =
[
Ω − δ + δin

1 + δ2

1 + δ2
in

]
ΓTc. (4.14)

The normalized intensities Y1,2 versus the normalized de-
tuning Ω were calculated using formulas (4.11, 4.12). For
the case of the peak-mode injection (when the injected
frequency ωin is close to the frequency of the peak mode
ωn), the results of such calculations are plotted in Fig-
ure 10a. Here the normalized intensities Y1,2 calculated
with the rate equations model are also shown by dotted
curves. Solid curves show corresponding results computed
with the F-P-amplifier model. One can see that both mod-
els give practically the same results. In Figure 10b, the
results are shown in the region of detunings Ω including
side-mode injection. Here the rate-equation model writ-
ten for the case of the peak-mode injection is not valid
and formulas (4.11, 4.12) of the F-P model may be used.
These results were calculated for the microchip YAG:Nd
laser with a cavity length of 1 mm, δ = 0.4, a cavity loss
of 2%, a pump excess η0 − δ2 = 2 and for a normalized
amplitude of the injected field S = 10.

Fig. 10. Normalized intensities Y1,2 versus normalized detun-
ing Ω in the periodic beat regime for the peak-mode injection
(a) and side-mode injection (b). Results for the Fabry-Perot
and rate-equation models are shown, respectively, by solid and
dotted curves. These results were calculated for the YAG:Nd
microchip laser with a cavity length of 1 mm, δ = 0.4, a cav-
ity loss of 2%, a pump excess η0 − δ

2 = 2, and a normalized
amplitude of the injected field S = 10.

5 Conclusion

We have presented a theoretical analysis of the dynamic
properties of injected microchip lasers with the use of two
models. The first model is based on traditional rate equa-
tions used in references model [1–11,13–28]. The second
model was recently introduced f or an injected (class A)
gas laser in references [35,36]. Two field components are
considered which are respectively centered around the fre-
quency of an eigenmode of the injected laser ωn and the
frequency of the injected field ωin. One can write a tra-
ditional rate equation for the component at ωn, but the
equation is modified for the second component to account
for Fabry-Perot filter effects. In both models, computation
of locking ranges and bistability domains within the lock-
ing range has been performed and the results compared.
We have also derived in both models analytic solutions
for the periodic beat regime and studied its stability in
the rate-equation model. It was shown that there is an
asymmetric behavior of beats close to the boundaries of
injection locking range. Analytic investigation of an insta-
bility region and the relaxation oscillations for the periodic
beat regime has been done for the first time. In the region
of instability of the periodically beat regime, numerical
simulations show periodic spiking, the onset of dynamical
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chaos and bistability. A comparison of results obtained for
the two models leads to the conclusion that both models
are equivalent for small normalized detunings Ω. However,
the Fabry-Perot model describes more correctly both the
peak-mode injection and side-mode injection in a broader
region of detunings Ω, where it gives results which are dif-
ferent from those obtained with the rate-equation model.
Analysis of bistability within the locking range in a mi-
crochip laser has shown that the bistability region in the
F-P amplifier model is much broader. It will be inter-
esting to experimentally test these theoretical predictions
on bistability domains and temporal dynamics including
chaos.

E.G. Lariontsev and I. Zolotoverkh wish to acknowledge the fi-
nancial support of the Russian Foundation for Basic Research.
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Appendix A: Equation for the field

The aim of this appendix is to describe the medium and
the field from first principles in order to describe the series
of approximations which are necessary to obtain our basic
equations. The main problem is to find a criterion to de-
cide if the field can be represented by a single component
in the frame of the Slowly-Varying Envelope Approxima-
tion (SVEA) or by two or more components. The SVEA
mixes the time and the frequency domains and brings a
limitation to the precision with which the response of a
physical device to an excitation can be calculated. In the
following we will show that this precision depends upon
the dispersion of the response function of the excited de-
vice. In our particular case, the device is the laser, the
excitation is the injected field (spontaneous emission is
neglected) and the response is the laser field. In the fre-
quency domain, the cavity response function is found from
Maxwell equations and boundary conditions on the mir-
rors (this is the laser Airy function). A Fourier transform
leads to a field-dependent equation. In the following, we
will use either the frequency ν or the angular frequency ω
such that: ω = 2πν. Transverse effects will be neglected.
The field E(t) in the time domain is written in complex
notation. Introducing the frequency componentsE(ω), the
Fourier relation writes:

E(t) =

∫ ∞
0

E(ω)eiωtdν =
∑
m

eiωmtEm(t) + C.C. (A.1)

where:

Em(t) =

∫ νm+δν/2

νm−δν/2
E(ω)ei(ω−ωm)tdν. (A.2)

The discrete sum contains the slowly envelopes Em(t), each
of which being centered around a frequency. The interval
δν is fixed by the data of the problem. In this paper we

examine the case of a single mode laser field and an in-
jected field together with other spectral components which
are non-linearly generated. All these components span a
frequency interval ∆ν. If the properties of the amplify-
ing medium (gain and refraction index) and of the cavity
(round trip phase) do not change appreciably inside ∆ν,
one can take δν = ∆ν, i.e., a single component E(t). Oth-
erwise, one should keep as many components as necessary.
The problem is to find a criterion following which one can
use a single component or not. Let E1(ν) be the internal
laser field component at frequency ν on the mirror which
corresponds to the injected source s(ν). E1(ν) is obtained
from Maxwell equations and boundary conditions on the
cavity mirrors:

E1(ν)(1− r1r2e
g−iφ) = s(ν), (A.3)

where r1r2 represents the round-trip losses. We will take
r1r2 = e−L. The gain g and the cumulated round-trip
phase φ are both frequency dependent: φ = 2πν2nd/c.
The gain g and the refraction index n are both saturated
quantities. The source s(ν) corresponds to the sponta-
neous emission and/or to the injected field component.
A Fourier transform gives the corresponding field in the
time domain:

s(t) =

∫ ∞
0

E1(ν)(1− eg−L−iφ)e2iπνtdν. (A.4)

We will consider one field component centered around a
reference frequency ν0, in the frame of the SVEA and such
that:

s(t) = s0(t)e2iπν0t, (A.5)

E(t) = E1(t)e2iπν0t. (A.6)

In the case where the considered frequency interval is
small enough, the quantity:

a(ν) := 1− eg−L−iφ, (A.7)

can be expanded in a Taylor series around ν0:

a(ν) = a(ν0) + (ν − ν0)a′(ν0) +
1

2
(ν − ν0)2a′′(ν0) + · · · ,

(A.8)

where a′(ν0) and a′′(ν0) are the derivatives of a(ν) at ν =
ν0 with respect to ν. The crucial point will be the rate of
convergence of this series. One obtains:

s0(t) =

∫ ∞
0

E1(ν)[a(ν0) + (ν − ν0)a′(ν0)

+
1

2
(ν − ν0)2a′′(ν0) + · · · ]ei(ω−ω0)tdν, (A.9)

s0(t) = a(ν0)E1(t)−
i

2π
a′(ν0)

dE1(t)

dt

−
1

8π2
a′′(ν0)

d2E1(t)

dt2
+ · · · (A.10)
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When the convergence of the series is fast enough, it can
be truncated and one obtains the time-varying differential
equation:

dE1
dt

= 2iπ
s0

a′(ν0)
− 2iπ

a(ν0)

a′(ν0)
E1. (A.11)

The simplest dynamic equation for the field thus writes:

dE1
dt

= 2iπ
s0e

(L−g+iφ0)

−g′ + iφ′0
− 2iπ

e(L−g+iφ0) − 1

−g′ + iφ′0
E1. (A.12)

One sees that such an equation has a precision limited
by the complex dispersion of the medium. A stationary
regime can exist only when a(ν) is frequency-independent
(i.e. s0(t) = a(ν0)E1(t)). The criterion for the field to be
represented by a single component in the SVEA is:

|a′(ν0) |�
1

2
(ν−ν0) |a′′(ν0) |�

1

6
(ν−ν0)2 |a′′′(ν0) | · · · ,

(A.13)

and thus the above equation holds if:

| −g′ + iφ′0 |� 1/2(ν − ν0) | [−g′′ + iφ′′0 + (−g′ + iφ′0)2] | .
(A.14)

We will later introduce expressions for g and φ0 and their
derivatives in this equation. If the above criterion is not
fulfilled for one component, one has to divide the fre-
quency range into as many intervals as necessary and write
an equation for each field envelope.

In the mean-field approximation, one needs an equa-
tion for the mean field E inside the laser. This field re-
sults from the sum of two counter propagating waves.
After a round trip time, one sees that E1(t) becomes
E1(t) e(g−L−iφ). Now the adiabatic approximation for the
medium polarization is equivalent to the neglect of the
variation of the polarizability around the frequency of in-
terest. It follows that in this approximation, g′ = 0 and
φ′0 = 4πd/c. Our equation for a component of the field
around a given frequency will thus be:

dE

dt
=
κEin
Tc
−

1

Tc
[1− e(−L+g−iφ0)]E , (A.15)

where κEin represents the mean value of the source term
during the time Tc = 2d/c as expressed following the in-
jection coefficient κ and the launched field Ein.

Appendix B: Gain and dispersion of the active
medium

In this appendix, we will derive expressions for the gain
and for the dispersion in order to verify our preceding cri-
terion. We will use the density matrix formalism applied
to a two energy level system interacting with a field ex-
pressed with two frequency components:

E(t) = E1e
(iω1t) + E2e

(iω2t) + C.C., (B.1)

where E1 and E2 are mutually incoherent (i.e. stationary)
fields. The equation of evolution for the density operator
ρ̂ which locally describes the active medium writes:

i~
dρ̂

dt
= [Ĥ, ρ̂]− + phenomenological terms, (B.2)

where Ĥ is the Hamiltonian which will be written in the
dipole approximation. Phenomenological terms describe
the pumping and the different relaxation rates and result
from the restriction of the atomic system to two energy
levels |u〉 and |d〉 (up and down). This equation can be
expended for the populations ρuu and ρdd and optical co-
herence terms ρdu:

i~
dρdd

dt
= (Ĥρ̂− ρ̂Ĥ)dd + i~Λd − i~γdρdd, (B.3)

i~
dρuu

dt
= (Ĥρ̂− ρ̂Ĥ)uu + i~Λu − i~γuρuu, (B.4)

i~
dρdu

dt
= (Ĥρ̂− ρ̂Ĥ)du − i~γduρdu. (B.5)

Terms like i~Λ(d,u) describe the pumping effects. The γ’s
stand for the different relaxation rates. In the following,
the population ρdd will be neglected because, in Nd3+, γd
is of the order of 109 s−1 and thus the lower level empties
very quickly. One has: Ĥ = H0 − µE. H0 is the non-
perturbed Hamiltonian whose eigenvectors are |u〉 and |d〉.
To these vectors correspond the energies Eu and Ed. We
will take the energy difference: Eu−Ed = ~ω0. Equations
for the matrix elements can be developed:

i~
dρuu

dt
= −E[µudρdu − µduρud] + i~Λu − i~γuρuu,

(B.6)

i~
dρdu

dt
= −~ω0ρdu −Eµduρuu − i~γduρdu. (B.7)

Making the SVEA for the description of the medium po-
larization waves one writes:

ρdu = p1due
iω1t + p2due

iω2t. (B.8)

Now, the population term contains low frequency compo-
nents as well. We will neglect them and write ρuu ' p0.
Moreover, we will make the adiabatic approximation on
the medium polarization:

i~
dρdu

dt
= −~ω1p1due

iω1t. (B.9)

Normalization can be achieved by using the saturation
intensity: Is = (1/2µ2)(~2γduγu). We will take:

Y1 =
I1

Is
, (B.10)

Y2 =
I2

Is
· (B.11)

One can introduce the normalized detunings: δ1 =
ω1 − ω0

γdu
and δ2 =

ω2 − ω0

γdu
. p0 can be normalized by its
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value at threshold. At this point, Λu0 = Λuth and one
takes:

N = p0
γu

Λuth
· (B.12)

One thus obtains:

dN

dt
=

1

T1

[
N0 −N(1 +

Y1

1 + δ2
1

+
Y2

1 + δ2
2

)
]
, (B.13)

with the normalized pumping rate: N0 = Λu0/Λuth and
the notation T1 = 1/γu. The medium polarization is ex-
pressed by the general equation:

P = Tr[ρµ]. (B.14)

Its slowly-varying envelopes P1(t) and P2(t) are de-
fined by:

P = P1(t)eiω1t + P2(t)eiω2t + C.C. (B.15)

P1(t) can be expressed as a function of N :

P1(t) = −
µ2

~
[ω0 − ω1 + iγdu]E1N

Λuth

γu
· (B.16)

It gives the polarizability α1 (and α2) from which the gain:

g1 = ωTc
αi1
2ε0

(B.17)

and the round-trip phase:

φ1 = ωTc

[
1 +

αr

2ε0

]
(B.18)

can be computed (we take Tc = 2d/c). One finds:

α1 =
µ2

~
N

ω1 − ω0 + iγdu

(ω1 − ω0)2 + γ2
du

Λuth

γu
· (B.19)

At threshold (at line center), N = 1 and g1 compensates
for losses (g1 = L). One thus has the expression for the
gain normalized at threshold:

g1 =
LN

1 + δ2
1

= ΓTc
N

1 + δ2
1

· (B.20)

We have introduced the notation Γ = L/Tc which corre-
sponds to the loss per round trip. The expression for the
phase is:

φ1 = ω1Tc + g1δ1. (B.21)

The same relations hold for the second component with
indices 2 instead of 1. From these relations and equa-
tion (A.15) for the field, equations (2.3, 2.4) and then
(2.1) are easily recovered.
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